skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haiman, Zoltán"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose a formation pathway linking black holes (BHs) observed in gravitational-wave (GW) mergers, wide BH–stellar systems uncovered by Gaia, and accreting low-mass X-ray binaries (LMXBs). In this scenario, a stellar-mass BH binary undergoes isolated binary evolution and merges while hosting a distant, dynamically unimportant tertiary stellar companion. The tertiary becomes relevant only after the merger, when the remnant BH receives a GW recoil kick. Depending on the kick velocity and system configuration, the outcome can be: (1) a bright electromagnetic (EM) counterpart to the GW merger; (2) an LMXB; (3) a wide BH–stellar companion system resembling the Gaia BH population; or (4) an unbound isolated BH. Modeling the three-body dynamics, we find that ∼0.02% of LIGO–Virgo–KAGRA (LVK) mergers may be followed by an EM counterpart within ∼10 days, produced by tidal disruption of the star by the BH. The flare is likely brightest in the optical–UV and lasts for days to weeks; in some cases, partial disruption causes recurring flares with a period of ∼2 months. We further estimate that this channel can produce ∼1%–10% of Gaia BH systems in the Milky Way. This scenario provides the first physically motivated link between GW sources, Gaia BHs, and some X-ray binaries, and predicts a rare but robust pathway for EM counterparts to binary BH mergers, potentially detectable in LVK’s O5 run. 
    more » « less
    Free, publicly-accessible full text available October 8, 2026
  2. ABSTRACT The multimessenger combination of gravitational waves (GWs) from merging massive black hole binaries (MBHBs) and the electromagnetic (EM) counterpart from the surrounding circumbinary disc (CBD) will open avenues to new scientific pursuits. In order to realize this science, we need to correctly localize the host galaxy of the merging MBHB. Multiwavelength, time-dependent EM signatures can greatly facilitate the identification of the unique EM counterpart among many sources in LISA’s localization volume. To this end, we studied merging unequal-mass MBHBs embedded in a CBD using high-resolution 2D simulations, with a $$\Gamma$$-law equation of state, incorporating viscous heating, shock heating, and radiative cooling. We simulate each binary starting from before it decouples from the CBD until just after the merger. We compute EM signatures and identify distinct features before, during, and after the merger. We corroborate previous findings of a several orders of magnitude drop in the thermal X-ray luminosity near the time of merger, but with delayed timing compared to an equal-mass system. The source remains X-ray dark for hours post-merger. Our main results are a potential new signature of a sharp spike in the thermal X-ray emission just before the tell-tale steep drop occurs. This feature may further help to identify EM counterparts of LISA’s unequal MBHBs before merger without the need for extensive pre-merger monitoring. Additionally, we find a role-reversal in which the primary out-accretes the secondary during late inspiral, which may diminish signatures originating from Doppler modulation. 
    more » « less
  3. ABSTRACT Population III stars are possible precursors to early supermassive black holes (BHs). The presence of soft UV Lyman–Werner (LW) background radiation can suppress Population III star formation in minihaloes and allow them to form in pristine atomic-cooling haloes. In the absence of molecular hydrogen ($$\rm H_2$$) cooling, atomic-cooling haloes enable rapid collapse with suppressed fragmentation. High background LW fluxes from preceding star-formation have been proposed to dissociate $$\rm H_2$$. This flux can be supplemented by LW radiation from one or more Population III star(s) in the same halo, reducing the necessary background level. Here, we consider atomic-cooling haloes in which multiple protostellar cores form close to one another nearly simultaneously. We assess whether the first star’s LW radiation can dissociate nearby $$\rm H_2$$, enabling rapid accretion on to a nearby protostellar core, and the prompt formation of a second, supermassive star (SMS) from warm, atomically-cooled gas. We use a set of hydrodynamical simulations with the code enzo, with identical LW backgrounds centred on a halo with two adjacent collapsing gas clumps. When an additional large local LW flux is introduced, we observe immediate reductions in both the accretion rates and the stellar masses that form within these clumps. While the LW flux reduces the $$\text{H}_2$$ fraction and increases the gas temperature, the halo core’s potential well is too shallow to promptly heat the gas to $$\gtrsim$$1000 K and increase the second protostar’s accretion rate. We conclude that this internal LW feedback scenario is unlikely to facilitate SMS or massive BH seed formation. 
    more » « less
  4. Abstract We demonstrate that gas disks around binary systems might deliver gas to the binary components only when the circumbinary disk is relatively warm. We present new grid-based hydrodynamics simulations, performed with the binary on the grid and a locally isothermal equation of state, in which the binary is seen to functionally “stop accreting” if the orbital Mach number in the disk exceeds a threshold value of about 40. Above this threshold, the disk continues to extract angular momentum from the binary orbit, but it delivers very little mass to the black holes and instead piles up mass in a ring surrounding the binary. This ring will eventually become viscously relaxed and deliver mass to the binary at the large-scale inflow rate. However, we show that the timescale for such relaxation can far exceed the implied binary lifetime. We demonstrate that the ability of a binary–disk system to equilibrate is dependent on the efficiency at which accretion streams deposit mass onto the binary, which, in turn is highly sensitive to the thermodynamic conditions of the inner disk. If disks around massive black hole binaries do operate in such nonaccreting regimes, it suggests these systems may be dimmer than their single black hole counterparts but could exhibit dramatic rebrightening after the black holes inspiral and merge. This dimming begins in the UV/optical and could completely choke high-energy emission, such that these systems would likely be intrinsically X-ray weak with reddened continua, potentially resembling the spectra of “little red dots” recently identified in JWST observations. 
    more » « less
    Free, publicly-accessible full text available May 7, 2026
  5. ABSTRACT The early growth of black holes (BHs) in atomic-cooling haloes is likely influenced by feedback on the surrounding gas. While the effects of radiative feedback are well-documented, mechanical feedback, particularly from active galactic nucleus (AGN) jets, has been comparatively less explored. Building on our previous work that examined the growth of a 100 $${\rm M_\odot }$$ BH in a constant density environment regulated by AGN jets, we expand the initial BH mass range from 1 to $$10^4\, {\rm M_\odot }$$ and adopt a more realistic density profile for atomic-cooling haloes. We reaffirm the validity of our analytic models for jet cocoon propagation and feedback regulation. We identify several critical radii – namely, the terminal radius of jet cocoon propagation, the isotropization radius of the jet cocoon, and the core radius of the atomic-cooling halo – that are crucial in determining BH growth given specific gas properties and jet feedback parameters. In a significant portion of the parameter space, our findings show that jet feedback substantially disrupts the halo’s core during the initial feedback episode, preventing BH growth beyond $$10^4 \, {\rm M_\odot }$$. Conversely, conditions characterized by low jet velocities and high gas densities enable sustained BH growth over extended periods. We provide a prediction for the BH mass growth as a function of time and feedback parameters. We found that, to form a supermassive BH ($$\gt 10^6 \, {\rm M_\odot }$$) within 1 Gyr entirely by accreting gas from an atomic-cooling halo, the jet energy feedback efficiency must be $$\lesssim 10^{-4} \dot{M}_{\rm BH} c^2$$ even if the seed BH mass is $$10^4 \, {\rm M_\odot }$$. 
    more » « less
  6. Abstract The James Webb Space Telescope has revealed low-luminosity active galactic nuclei at redshifts ofz≳ 4–7, many of which host accreting massive black holes (BHs) with BH-to-galaxy mass (MBH/M) ratios exceeding the local values by more than an order of magnitude. The origin of these overmassive BHs remains unclear but requires potential contributions from heavy seeds and/or episodes of super-Eddington accretion. We present a growth model coupled with dark matter halo assembly to explore the evolution of theMBH/Mratio under different seeding and feedback scenarios. Given the gas inflow rates in protogalaxies, BHs grow episodically at moderate super-Eddington rates, and the mass ratio increases early on, despite significant mass loss through feedback. Regardless of seeding mechanisms, the mass ratio converges to a universal value ∼0.1–0.3, set by the balance between gas feeding and star formation efficiency in the nucleus. This behavior defines an attractor in theMBH–Mdiagram, where overmassive BHs grow more slowly than their hosts, while undermassive seeds experience rapid growth before aligning with the attractor. We derive an analytical expression for the universal mass ratio, linking it to feedback strength and halo growth. The convergence of evolutionary tracks erases seeding information from the mass ratio byz∼ 4–6. Detecting BHs with ∼105−6Mat higher redshifts that deviate from the convergence trend would provide key diagnostics of their birth conditions. 
    more » « less
    Free, publicly-accessible full text available April 15, 2026
  7. ABSTRACT The brightest steady sources of radiation in the universe, active galactic nuclei (AGNs), are powered by gas accretion on to a central supermassive black hole (SMBH). The large sizes and accretion rates implicated in AGN accretion discs are expected to lead to gravitational instability and fragmentation, effectively cutting off mass inflow to the SMBH. Radiative feedback from disc-embedded stars has been invoked to yield marginally stable, steady-state solutions in the outer discs. Here, we examine the consequences of this star formation with a semi-analytical model in which stellar-mass black hole (sBH) remnants in the disc provide an additional source of stabilizing radiative feedback. Assuming star formation seeds the embedded sBH population, we model the time-evolving feedback from both stars and the growing population of accreting sBHs. We find that in the outer disc, the luminosity of the sBHs quickly dominates that of their parent stars. However, because sBHs consume less gas than stars to stabilize the disc, the presence of the sBHs enhances the mass flux to the inner disc. As a result, star formation persists over the lifetime of the AGN, damped in the outer disc, but amplified in a narrow ring in the inner disc. Heating from the embedded sBHs significantly modifies the disc’s temperature profile and hardens its spectral energy distribution, and direct emission from the sBHs adds a new hard X-ray component. 
    more » « less
  8. ABSTRACT Supermassive black holes (SMBHs) with masses of ∼109 M⊙ within the first billion year of the universe challenge our conventional understanding of black hole formation and growth. One pathway to these SMBHs proposes that supermassive stars born in pristine atomic cooling haloes yield massive seed BHs evolving to these early SMBHs. This scenario leads to an overly massive BH galaxy (OMBG), in which the BH to stellar mass ratio is initially Mbh/M* ≥ 1, well in excess of the typical values of ∼10−3 at low redshifts. Previously, we have investigated two massive seed BH candidates from the Renaissance simulation and found that they remain outliers on the Mbh–M* relation until the OMBG merges with a much more massive halo at z = 8. In this work, we use Monte-Carlo merger trees to investigate the evolution of the Mbh–M* relation for 50 000 protogalaxies hosting massive BH seeds, across 10 000 trees that merge into a 1012 M⊙ halo at z = 6. We find that up to 60 per cent (depending on growth parameters) of these OMBGs remain strong outliers for several 100 Myr, down to redshifts detectable with JWST and with sensitive X-ray telescopes. This represents a way to diagnose the massive-seed formation pathway for early SMBHs. We expect to find ∼0.1–1 of these objects per JWST Near Infrared Camera (NIRCam) field per unit redshift at z ≳ 6. Recently detected SMBHs with masses of ∼107 M⊙ and low-inferred stellar-mass hosts may be examples of this population. 
    more » « less
  9. Abstract The astrophysical origin of stellar-mass black hole (BH) mergers discovered through gravitational waves (GWs) is widely debated. Mergers in the disks of active galactic nuclei (AGNs) represent promising environments for at least a fraction of these events, with possible observational clues in the GW data. An additional clue to unveil AGN merger environments is provided by possible electromagnetic emission from postmerger accreting BHs. Associated with BH mergers in AGN disks, emission from shocks emerging around jets launched by accreting merger remnants is expected. Here we compute the properties of the emission produced during breakout and the subsequent adiabatic expansion phase of the shocks, and we then apply this model to optical flares suggested to be possibly associated with GW events. We find that the majority of the reported flares can be explained by breakout and shock cooling emission. If the optical flares are produced by shock cooling emission, they would display moderate color evolution, possibly color variations among different events, and a positive correlation between delay time and flare duration and would be preceded by breakout emission in X-rays. If the breakout emission dominates the observed lightcurve, we predict the color to be distributed in a narrow range in the optical band and the delay time from GW to electromagnetic emission to be longer than ∼2 days. Hence, further explorations of delay time distributions, flare color evolution, and associated X-ray emission will be useful to test the proposed emission model for the observed flares. 
    more » « less
  10. Abstract Extreme mass-ratio inspirals (EMRIs) take place when a stellar-mass black hole (BH) merges with a supermassive BH (SMBH). The gravitational-wave emission from such an event is expected to be detectable by the future Laser Interferometer Space Antenna (LISA) and other millihertz detectors. It was recently suggested that the EMRI rate in SMBH binary systems is orders of magnitude higher than the EMRI rate around a single SMBH with the same total mass. Here we show that this high rate can produce thousands of SMBH–BH sources at a redshift of unity. We predict that LISA may detect a few hundred of these EMRIs with signal-to-noise ratio above S/N ≥8 within a 4 yr mission lifetime. The remaining subthreshold sources will contribute to a large confusion noise, which is approximately an order of magnitude above LISA’s sensitivity level. Finally, we suggest that the individually detectable systems, as well as the background noise from the subthreshold EMRIs, can be used to constrain the SMBH binary fraction in the low-redshift Universe. 
    more » « less